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Introduction

▸ Objective: study of stochastic models to a better
understanding of component/system ageing

▸ Degradation models vs. Lifetime models? highly reliable
components, use of complex preventive maintenance
policies, etc.

▸ Current models: component degradation initiated when put
in service!

▸ Need of some new models: models with an initiation
period (deterministic or random)
See Guo et al. (13), Nelson (10)
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Degradation model

Degradation model with random initiation period (X(t))t≥0:

X(t) = [µ(t −S) + σB(t −S)] It≥S

where
▸ t = 0 is the instant where the component is put in service
▸ (B(t))t≥0 is a standard Brownian motion
▸ S is an absolutely continuous and positive random

variable, independent of (B(t))t≥0



Time-to-failure

For degradation model, time-to-failure Tc = first-time to reach a
given and known critical level c:

Tc = inf{t ≥ 0; X(t) ≥ c}

Special case: S exponentially distributed, see Schwarz (01, 02)
with an application in psychology
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Simulations
Simulation of three sample paths:
black circles = degradation initiations
red dash line = critical level.
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Statistical model

Observations?

▸ n independent components: n copies X1, . . . ,Xn of X

▸ discrete-time sampling at regular instants
0, δ,2δ, . . . ,mδ = τ

Consequence: random number of non-null observations

Model assumptions? Parametric model for the distribution of S,
with unknown parameter θ ∈ Θ ⊆ Rp
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Notations (1/3)

Random variable Ri such (Ri − 1)δ < Si ≤ Riδ.

1 if Ri > m, Si > mδ = τ and Xi(jδ) = 0 for any j ∈ {0, . . . ,m}

Information only on θ (right-censoring)

2 if Ri = m, (m − 1)δ < S ≤ mδ and Xi(jδ) = 0 for any
j ∈ {0, . . . ,m − 1} but Xi(mδ) ≠ 0
Information only on θ (interval-censoring)

3 if Ri < m, at least two non-null degradation measures
observed
Information on θ (interval-censoring), µ and σ2
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Notations (2/3)
Three random subsets of the individuals:

▸ N 0: set of individuals with zero non-null degradation
measure:

N0 = {i ; Ri > m} ⊆ {1, . . . ,n} and N0 = ∣N0∣

▸ N1: set of individuals with exactly one non-null degradation
measure:

N1 = {i ; Ri = m} ⊆ {1, . . . ,n} and N1 = ∣N1∣

▸ N2+: set of individuals with exactly at least two degradation
measures:

N2+ = {i ; Ri < m} ⊆ {1, . . . ,n} and N2+ = ∣N2+∣
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Notations (3/3)

▸ Random vector K = (Kr)r∈N∗ such that, for r ∈ N∗,

Kr =
n
∑
i=1

I(r−1)δ<Ri≤rδ =
n
∑
i=1

IRi=r

Remark: ∑m
r=1 Kr = n −N0

▸ Random number Qn of non-null increments: if Qn non
empty set,

Qn = ∑
i∈N2+

(m −Ri) =
m−1
∑
j=1

(m − j)Kj

taking values in {1, . . . , (m − 1)n}
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An important result

Lemma

1 For any α ∈ [0,1),
Qn

nα
Pr
ÐÐÐ→
n→∞

∞

2 Let α(m, τ) = 1
m ∑

m−1
j=0 FS(jτ/m). We have

Qn

n
Pr
ÐÐÐ→
n→∞

mα(m, τ)

3 E[Q−1
n ∣Qn > 0]ÐÐÐ→

n→∞
0
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Estimation of the distribution of S (1/2)

▸ Survival function of S: F S(t ; θ) = P[S ≤ t]

▸ Log-likelihood function:

`(θ∣data) = N0 log F S(τ ; θ)+
m
∑
r=1

Kr log (F S((r − 1)δ; θ) − F S(rδ; θ))

▸ Maximum likelihood estimator:

θ̂n = argmaxθ∈Θ`(θ∣data).

No closed-form expression in general
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Estimation of the distribution of S (2/2)

Asymptotic normality for θ̂n as n →∞?

Yes. . .
▸ MLE = root of the equation:

0 = N0
∂θF S(τ ; θ̂n)

F S(τ ; θ̂n)
+

m
∑
r=1

Kr
∂θF S((r − 1)δ; θ̂n) − ∂θF S(rδ; θ̂n)

F S((r − 1)δ; θ̂n) − F S(rδ; θ̂n)

▸ Convergence of (K1, . . . ,Km) to a Gaussian distribution
▸ δ-method for implicitly defined random variables (Benichou

and Gail, 89)
▸ Closed expression for the Fisher information
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Example: exponential distribution

▸ Closed expression for the MLE:

λ̂n =
1
δ

log(
N0τ + δ∑

m
r=1 rKr

N0τ + δ∑
m
r=1(r − 1)Kr

)

▸ Asymptotic variance:

ρ2
=

(eλδ − 1)2

δ2eλδ(1 − e−λτ)

Remark: ρ2
ÐÐ→
δ→0

λ2

1 − e−λτ
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Estimation of µ and σ2 (1/2)
▸ Natural estimator of µ:

µ̂n =

∑
i∈N2+

m−Ri

∑
j=1

∆Xi,j

δ ∑
i∈N2+

(m −Ri)
=

1
δQn

Qn

∑
h=1

Zh,

where Z1, . . . ,ZQn are the increments between two non-null
degradation measures: random number of iid Gaussian
random variables with mean µδ and variance σ2δ

▸ Natural estimator of σ2:

σ̂2
n =

1
δ(Qn − 1)

Qn

∑
h=1

(Zh − δµ̂n)
2.
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Estimation of µ and σ2 (2/2)
Proposition

1 µ̂n is asymptotically normal:

√
Qn (µ̂n − µ)

d
ÐÐÐ→
n→∞

N (0,
σ2

δ
)

and
√

n (µ̂n − µ)
d

ÐÐÐ→
n→∞

N (0,
σ2

τα(m, τ)
)

where α(m, τ) is given in the Lemma
2 σ̂2

n is asymptotically normal:

√
Qn (σ̂2

n − σ
2)

d
ÐÐÐ→
n→∞

N (0,2σ4)
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Mean time-to-failure estimation
▸ Mean time-to-failure:

MTTF = E[S] +
c
µ

▸ Plug-in estimator for MTTF:

M̂TTF n = ∫
∞

0
F S(u; θ̂n)du +

c
µ̂

▸ Asymptotic normality? Yes! Asymptotic variance:

I(θ)−1
(∫

∞

0
∂θF S(u; θ)du)

2
+

c2σ2

µ4τα(m, τ)
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MTTF = E[S] +
c
µ

▸ Plug-in estimator for MTTF:

M̂TTF n = ∫
∞

0
F S(u; θ̂n)du +

c
µ̂

▸ Asymptotic normality? Yes! Asymptotic variance:

I(θ)−1
(∫

∞

0
∂θF S(u; θ)du)

2
+

c2σ2

µ4τα(m, τ)



Guo et al. data
Black lines: observed degradation paths
Red dashed line: critical level
Blue dashed line: MTTF estimation
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Fitted parameters

Parameter Estimation 95% confidence interval
λ 0.023 [0.013,0.032]
µ 0.108 [0.097,0.119]
σ2 0.041 [0.033,0.048]
MTTF 88.332 [69.438,107.227]



Estimated survival function
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Estimated hazard function
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