Inference for the Wiener process with random initiation time

Christian Paroissin

Laboratoire de Mathématiques et de leurs Applications Université de Pau et des Pays de l'Adour

AMMSI Workshop, Troyes (France), January 2015
(9) Introduction and model
(2) Parameters estimation
(3) Time-to-failure estimation

4 Application to a dataset
(5) Bibliography

(9) Introduction and model
(2) Parameters estimation
(3) Time-to-failure estimation

4 Application to a dataset
(5) Bibliography

- Objective: study of stochastic models to a better understanding of component/system ageing
- Objective: study of stochastic models to a better understanding of component/system ageing
- Degradation models vs. Lifetime models? highly reliable components, use of complex preventive maintenance policies, etc.
- Objective: study of stochastic models to a better understanding of component/system ageing
- Degradation models vs. Lifetime models? highly reliable components, use of complex preventive maintenance policies, etc.
- Current models: component degradation initiated when put in service!

Introduction

- Objective: study of stochastic models to a better understanding of component/system ageing
- Degradation models vs. Lifetime models? highly reliable components, use of complex preventive maintenance policies, etc.
- Current models: component degradation initiated when put in service!
- Need of some new models: models with an initiation period (deterministic or random) See Guo et al. (13), Nelson (10)

Degradation model with random initiation period $(X(t))_{t \geq 0}$:

$$
X(t)=[\mu(t-S)+\sigma B(t-S)] \mathbb{I}_{t \geq S}
$$

where

- $t=0$ is the instant where the component is put in service
- $(B(t))_{t \geq 0}$ is a standard Brownian motion
- S is an absolutely continuous and positive random variable, independent of $(B(t))_{t \geq 0}$

Time-to-failure

For degradation model, time-to-failure $T_{C}=$ first-time to reach a given and known critical level c :

$$
T_{c}=\inf \{t \geq 0 ; X(t) \geq c\}
$$

For degradation model, time-to-failure $T_{C}=$ first-time to reach a given and known critical level c :

$$
T_{c}=\inf \{t \geq 0 ; X(t) \geq c\}
$$

Special case: S exponentially distributed, see Schwarz (01, 02) with an application in psychology

Simulation of three sample paths: black circles = degradation initiations red dash line = critical level.

(1) Introduction and model
(2) Parameters estimation
(3) Time-to-failure estimation

4 Application to a dataset
(5) Bibliography

Statistical model

Observations?

Statistical model

Observations?

- n independent components: n copies X_{1}, \ldots, X_{n} of X

Statistical model

Observations?

- n independent components: n copies X_{1}, \ldots, X_{n} of X
- discrete-time sampling at regular instants $0, \delta, 2 \delta, \ldots, m \delta=\tau$

Statistical model

Observations?

- n independent components: n copies X_{1}, \ldots, X_{n} of X
- discrete-time sampling at regular instants $0, \delta, 2 \delta, \ldots, m \delta=\tau$

Consequence: random number of non-null observations

Statistical model

Observations?

- n independent components: n copies X_{1}, \ldots, X_{n} of X
- discrete-time sampling at regular instants $0, \delta, 2 \delta, \ldots, m \delta=\tau$

Consequence: random number of non-null observations

Model assumptions? Parametric model for the distribution of S, with unknown parameter $\theta \in \Theta \subseteq \mathbb{R}^{p}$

Notations (1/3)
Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$ Information only on θ (right-censoring)

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$ Information only on θ (right-censoring)
(2) if $R_{i}=m,(m-1) \delta<S \leq m \delta$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m-1\}$ but $X_{i}(m \delta) \neq 0$

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$ Information only on θ (right-censoring)
(2) if $R_{i}=m,(m-1) \delta<S \leq m \delta$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m-1\}$ but $X_{i}(m \delta) \neq 0$ Information only on θ (interval-censoring)

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$ Information only on θ (right-censoring)
(2) if $R_{i}=m,(m-1) \delta<S \leq m \delta$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m-1\}$ but $X_{i}(m \delta) \neq 0$ Information only on θ (interval-censoring)
(3) if $R_{i}<m$, at least two non-null degradation measures observed

Random variable R_{i} such $\left(R_{i}-1\right) \delta<S_{i} \leq R_{i} \delta$.
(1) if $R_{i}>m, S_{i}>m \delta=\tau$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m\}$ Information only on θ (right-censoring)
(2) if $R_{i}=m,(m-1) \delta<S \leq m \delta$ and $X_{i}(j \delta)=0$ for any $j \in\{0, \ldots, m-1\}$ but $X_{i}(m \delta) \neq 0$ Information only on θ (interval-censoring)
(3) if $R_{i}<m$, at least two non-null degradation measures observed
Information on θ (interval-censoring), μ and σ^{2}

Notations (2/3)

Three random subsets of the individuals:

Three random subsets of the individuals:

- \mathcal{N}_{0} : set of individuals with zero non-null degradation measure:

$$
\mathcal{N}_{0}=\left\{i ; R_{i}>m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{0}=\left|\mathcal{N}_{0}\right|
$$

Three random subsets of the individuals:

- \mathcal{N}_{0} : set of individuals with zero non-null degradation measure:

$$
\mathcal{N}_{0}=\left\{i ; R_{i}>m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{0}=\left|\mathcal{N}_{0}\right|
$$

- \mathcal{N}_{1} : set of individuals with exactly one non-null degradation measure:

$$
\mathcal{N}_{1}=\left\{i ; R_{i}=m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{1}=\left|\mathcal{N}_{1}\right|
$$

Three random subsets of the individuals:

- \mathcal{N}_{0} : set of individuals with zero non-null degradation measure:

$$
\mathcal{N}_{0}=\left\{i ; R_{i}>m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{0}=\left|\mathcal{N}_{0}\right|
$$

- \mathcal{N}_{1} : set of individuals with exactly one non-null degradation measure:

$$
\mathcal{N}_{1}=\left\{i ; R_{i}=m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{1}=\left|\mathcal{N}_{1}\right|
$$

- \mathcal{N}_{2+} : set of individuals with exactly at least two degradation measures:

$$
\mathcal{N}_{2+}=\left\{i ; R_{i}<m\right\} \subseteq\{1, \ldots, n\} \quad \text { and } \quad N_{2+}=\left|\mathcal{N}_{2+}\right|
$$

Notations (3/3)

- Random vector $\underline{\mathcal{K}}=\left(\mathcal{K}_{r}\right)_{r \in \mathbb{N}^{*}}$ such that, for $r \in \mathbb{N}^{*}$,

$$
\mathcal{K}_{r}=\sum_{i=1}^{n} \mathbb{I}_{(r-1) \delta<R_{i} \leq r \delta}=\sum_{i=1}^{n} \mathbb{I}_{R_{i}=r}
$$

- Random vector $\underline{\mathcal{K}}=\left(\mathcal{K}_{r}\right)_{r \in \mathbb{N}^{*}}$ such that, for $r \in \mathbb{N}^{*}$,

$$
\mathcal{K}_{r}=\sum_{i=1}^{n} \mathbb{I}_{(r-1) \delta<R_{i} \leq r \delta}=\sum_{i=1}^{n} \mathbb{I}_{R_{i}=r}
$$

Remark: $\sum_{r=1}^{m} K_{r}=n-N_{0}$

- Random vector $\underline{\mathcal{K}}=\left(\mathcal{K}_{r}\right)_{r \in \mathbb{N}^{*}}$ such that, for $r \in \mathbb{N}^{*}$,

$$
\mathcal{K}_{r}=\sum_{i=1}^{n} \mathbb{I}_{(r-1) \delta<R_{i} \leq r \delta}=\sum_{i=1}^{n} \mathbb{I}_{R_{i}=r}
$$

Remark: $\sum_{r=1}^{m} K_{r}=n-N_{0}$

- Random number Q_{n} of non-null increments: if Q_{n} non empty set,

$$
Q_{n}=\sum_{i \in \mathcal{N}_{2+}}\left(m-R_{i}\right)=\sum_{j=1}^{m-1}(m-j) K_{j}
$$

taking values in $\{1, \ldots,(m-1) n\}$

An important result

Lemma

(1) For any $\alpha \in[0,1)$,

$$
\frac{Q_{n}}{n^{\alpha}} \xrightarrow[n \rightarrow \infty]{P r} \infty
$$

An important result

Lemma

(1) For any $\alpha \in[0,1)$,

$$
\frac{Q_{n}}{n^{\alpha}} \xrightarrow[n \rightarrow \infty]{\operatorname{Pr}} \infty
$$

(2) Let $\alpha(m, \tau)=\frac{1}{m} \sum_{j=0}^{m-1} F_{S}(j \tau / m)$. We have

$$
\frac{Q_{n}}{n} \xrightarrow[n \rightarrow \infty]{P r} m \alpha(m, \tau)
$$

An important result

Lemma

(1) For any $\alpha \in[0,1)$,

$$
\frac{Q_{n}}{n^{\alpha}} \xrightarrow[n \rightarrow \infty]{\operatorname{Pr}} \infty
$$

(2) Let $\alpha(m, \tau)=\frac{1}{m} \sum_{j=0}^{m-1} F_{S}(j \tau / m)$. We have

$$
\frac{Q_{n}}{n} \xrightarrow[n \rightarrow \infty]{P r} m \alpha(m, \tau)
$$

(3) $\mathbb{E}\left[Q_{n}^{-1} \mid Q_{n}>0\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$

Estimation of the distribution of $S(1 / 2)$

- Survival function of $S: \bar{F}_{S}(t ; \theta)=\mathbb{P}[S \leq t]$

Estimation of the distribution of $S(1 / 2)$

- Survival function of S : $\bar{F}_{S}(t ; \theta)=\mathbb{P}[S \leq t]$
- Log-likelihood function:

$$
\ell(\theta \mid \text { data })=N_{0} \log \bar{F}_{S}(\tau ; \theta)+\sum_{r=1}^{m} K_{r} \log \left(\bar{F}_{S}((r-1) \delta ; \theta)-\bar{F}_{S}(r \delta ; \theta)\right)
$$

- Survival function of S : $\bar{F}_{S}(t ; \theta)=\mathbb{P}[S \leq t]$
- Log-likelihood function:
$\ell(\theta \mid$ data $)=N_{0} \log \bar{F}_{S}(\tau ; \theta)+\sum_{r=1}^{m} K_{r} \log \left(\bar{F}_{S}((r-1) \delta ; \theta)-\bar{F}_{S}(r \delta ; \theta)\right)$
- Maximum likelihood estimator:

$$
\widehat{\theta}_{n}=\operatorname{argmax}_{\theta \in \Theta} \ell(\theta \mid \text { data }) .
$$

No closed-form expression in general

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$?

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$? Yes...

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$? Yes...

- MLE $=$ root of the equation:

$$
0=N_{0} \frac{\partial_{\theta} \bar{F}_{S}\left(\tau ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left(\tau ; \hat{\theta}_{n}\right)}+\sum_{r=1}^{m} K_{r} \frac{\partial_{\theta} \bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\partial_{\theta} \bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}
$$

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$? Yes...

- MLE = root of the equation:

$$
0=N_{0} \frac{\partial_{\theta} \bar{F}_{S}\left(\tau ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left(\tau ; \hat{\theta}_{n}\right)}+\sum_{r=1}^{m} K_{r} \frac{\partial_{\theta} \bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\partial_{\theta} \bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}
$$

- Convergence of $\left(K_{1}, \ldots, K_{m}\right)$ to a Gaussian distribution

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$? Yes...

- MLE = root of the equation:

$$
0=N_{0} \frac{\partial_{\theta} \bar{F}_{S}\left(\tau ; \hat{\theta}_{n}\right)}{\bar{F}_{S}\left(\tau ; \widehat{\theta}_{n}\right)}+\sum_{r=1}^{m} K_{r} \frac{\partial_{\theta} \bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\partial_{\theta} \bar{F}_{S}\left(r \delta ; \hat{\theta}_{n}\right)}{\bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}
$$

- Convergence of $\left(K_{1}, \ldots, K_{m}\right)$ to a Gaussian distribution
- δ-method for implicitly defined random variables (Benichou and Gail, 89)

Estimation of the distribution of $S(2 / 2)$

Asymptotic normality for $\widehat{\theta}_{n}$ as $n \rightarrow \infty$? Yes...

- MLE = root of the equation:

$$
0=N_{0} \frac{\partial_{\theta} \bar{F}_{S}\left(\tau ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left(\tau ; \hat{\theta}_{n}\right)}+\sum_{r=1}^{m} K_{r} \frac{\partial_{\theta} \bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\partial_{\theta} \bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}{\bar{F}_{S}\left((r-1) \delta ; \widehat{\theta}_{n}\right)-\bar{F}_{S}\left(r \delta ; \widehat{\theta}_{n}\right)}
$$

- Convergence of $\left(K_{1}, \ldots, K_{m}\right)$ to a Gaussian distribution
- δ-method for implicitly defined random variables (Benichou and Gail, 89)
- Closed expression for the Fisher information

Example: exponential distribution

- Closed expression for the MLE:

$$
\widehat{\lambda}_{n}=\frac{1}{\delta} \log \left(\frac{N_{0} \tau+\delta \sum_{r=1}^{m} r K_{r}}{N_{0} \tau+\delta \sum_{r=1}^{m}(r-1) K_{r}}\right)
$$

- Closed expression for the MLE:

$$
\widehat{\lambda}_{n}=\frac{1}{\delta} \log \left(\frac{N_{0} \tau+\delta \sum_{r=1}^{m} r K_{r}}{N_{0} \tau+\delta \sum_{r=1}^{m}(r-1) K_{r}}\right)
$$

- Asymptotic variance:

$$
\rho^{2}=\frac{\left(\mathrm{e}^{\lambda \delta}-1\right)^{2}}{\delta^{2} \mathrm{e}^{\lambda \delta}\left(1-\mathrm{e}^{-\lambda \tau}\right)}
$$

- Closed expression for the MLE:

$$
\widehat{\lambda}_{n}=\frac{1}{\delta} \log \left(\frac{N_{0} \tau+\delta \sum_{r=1}^{m} r K_{r}}{N_{0} \tau+\delta \sum_{r=1}^{m}(r-1) K_{r}}\right)
$$

- Asymptotic variance:

$$
\rho^{2}=\frac{\left(\mathrm{e}^{\lambda \delta}-1\right)^{2}}{\delta^{2} \mathrm{e}^{\lambda \delta}\left(1-\mathrm{e}^{-\lambda \tau}\right)}
$$

Remark: $\rho^{2} \underset{\delta \rightarrow 0}{\longrightarrow} \frac{\lambda^{2}}{1-\mathrm{e}^{-\lambda \tau}}$

Estimation of μ and $\sigma^{2}(1 / 2)$

- Natural estimator of μ :

$$
\widehat{\mu}_{n}=\frac{\sum_{i \in \mathcal{N}_{2+}} \sum_{j=1}^{m-R_{i}} \Delta X_{i, j}}{\delta \sum_{i \in \mathcal{N}_{2+}}\left(m-R_{i}\right)}=\frac{1}{\delta Q_{n}} \sum_{h=1}^{Q_{n}} Z_{h},
$$

where $Z_{1}, \ldots, Z_{Q_{n}}$ are the increments between two non-null degradation measures: random number of iid Gaussian random variables with mean $\mu \delta$ and variance $\sigma^{2} \delta$

Estimation of μ and $\sigma^{2}(1 / 2)$

- Natural estimator of μ :

$$
\widehat{\mu}_{n}=\frac{\sum_{i \in \mathcal{N}_{2+}} \sum_{j=1}^{m-R_{i}} \Delta X_{i, j}}{\delta \sum_{i \in \mathcal{N}_{2+}}\left(m-R_{i}\right)}=\frac{1}{\delta Q_{n}} \sum_{h=1}^{Q_{n}} Z_{h},
$$

where $Z_{1}, \ldots, Z_{Q_{n}}$ are the increments between two non-null degradation measures: random number of iid Gaussian random variables with mean $\mu \delta$ and variance $\sigma^{2} \delta$

- Natural estimator of σ^{2} :

$$
\widehat{\sigma}_{n}^{2}=\frac{1}{\delta\left(Q_{n}-1\right)} \sum_{h=1}^{Q_{n}}\left(Z_{h}-\delta \widehat{\mu}_{n}\right)^{2}
$$

Estimation of μ and $\sigma^{2}(2 / 2)$

Proposition

(1) $\widehat{\mu}_{n}$ is asymptotically normal:

$$
\sqrt{Q_{n}}\left(\widehat{\mu}_{n}-\mu\right) \underset{n \rightarrow \infty}{\underset{~}{d}} N\left(0, \frac{\sigma^{2}}{\delta}\right)
$$

Estimation of μ and $\sigma^{2}(2 / 2)$

Proposition

(1) $\widehat{\mu}_{n}$ is asymptotically normal:

$$
\sqrt{Q_{n}}\left(\widehat{\mu}_{n}-\mu\right) \underset{n \rightarrow \infty}{\underset{~}{d}} N\left(0, \frac{\sigma^{2}}{\delta}\right)
$$

and

$$
\sqrt{n}\left(\widehat{\mu}_{n}-\mu\right) \xrightarrow[n \rightarrow \infty]{d} N\left(0, \frac{\sigma^{2}}{\tau \alpha(m, \tau)}\right)
$$

where $\alpha(m, \tau)$ is given in the Lemma

Estimation of μ and $\sigma^{2}(2 / 2)$

Proposition

(1) $\widehat{\mu}_{n}$ is asymptotically normal:

$$
\sqrt{Q_{n}}\left(\widehat{\mu}_{n}-\mu\right) \xrightarrow[n \rightarrow \infty]{d} N\left(0, \frac{\sigma^{2}}{\delta}\right)
$$

and

$$
\sqrt{n}\left(\widehat{\mu}_{n}-\mu\right) \xrightarrow[n \rightarrow \infty]{d} N\left(0, \frac{\sigma^{2}}{\tau \alpha(m, \tau)}\right)
$$

where $\alpha(m, \tau)$ is given in the Lemma
(2) $\widehat{\sigma}_{n}^{2}$ is asymptotically normal:

$$
\sqrt{Q_{n}}\left(\widehat{\sigma}_{n}^{2}-\sigma^{2}\right) \xrightarrow[n \rightarrow \infty]{d} N\left(0,2 \sigma^{4}\right)
$$

(1) Introduction and model
(2) Parameters estimation
(3) Time-to-failure estimation

4 Application to a dataset
(5) Bibliography

Mean time-to-failure estimation

- Mean time-to-failure:

$$
M T T F=\mathbb{E}[S]+\frac{c}{\mu}
$$

Mean time-to-failure estimation

- Mean time-to-failure:

$$
M T T F=\mathbb{E}[S]+\frac{c}{\mu}
$$

- Plug-in estimator for MTTF:

$$
\widehat{\operatorname{MTTF}}_{n}=\int_{0}^{\infty} \bar{F}_{S}\left(u ; \widehat{\theta}_{n}\right) \mathrm{d} u+\frac{c}{\hat{\mu}}
$$

Mean time-to-failure estimation

- Mean time-to-failure:

$$
M T T F=\mathbb{E}[S]+\frac{c}{\mu}
$$

- Plug-in estimator for MTTF:

$$
\widehat{M T T F}_{n}=\int_{0}^{\infty} \bar{F}_{S}\left(u ; \widehat{\theta}_{n}\right) \mathrm{d} u+\frac{c}{\widehat{\mu}}
$$

- Asymptotic normality?

Mean time-to-failure estimation

- Mean time-to-failure:

$$
M T T F=\mathbb{E}[S]+\frac{c}{\mu}
$$

- Plug-in estimator for MTTF:

$$
\widehat{M T T F}_{n}=\int_{0}^{\infty} \bar{F}_{S}\left(u ; \widehat{\theta}_{n}\right) \mathrm{d} u+\frac{c}{\widehat{\mu}}
$$

- Asymptotic normality? Yes!
- Mean time-to-failure:

$$
M T T F=\mathbb{E}[S]+\frac{c}{\mu}
$$

- Plug-in estimator for MTTF:

$$
\widehat{M T T F}_{n}=\int_{0}^{\infty} \bar{F}_{S}\left(u ; \widehat{\theta}_{n}\right) \mathrm{d} u+\frac{c}{\widehat{\mu}}
$$

- Asymptotic normality? Yes! Asymptotic variance:

$$
I(\theta)^{-1}\left(\int_{0}^{\infty} \partial_{\theta} \bar{F}_{S}(u ; \theta) \mathrm{d} u\right)^{2}+\frac{c^{2} \sigma^{2}}{\mu^{4} \tau \alpha(m, \tau)}
$$

Black lines: observed degradation paths
Red dashed line: critical level
Blue dashed line: MTTF estimation

Fitted parameters

Parameter	Estimation	95\% confidence interval
λ	0.023	$[0.013,0.032]$
μ	0.108	$[0.097,0.119]$
σ^{2}	0.041	$[0.033,0.048]$
MTTF	88.332	$[69.438,107.227]$

Estimated survival function

Estimated hazard function

(1) Introduction and model
(2) Parameters estimation
(3) Time-to-failure estimation

4 Application to a dataset
(5) Bibliography

固 J. Benichou and M.H. Gail.
A delta method for implicitly defined random variables. The American Statistician, 43(1): 41-44, 1989.
囲 G.H. Guo and A. Gerokostopoulos and H. Liao and N. Pengying.
Modeling and analysis for degradation with an initiation time.
Reliability and Maintainability Symposium (RAMS): 1-6, 2013.
W.B. Nelson.

Defect initiation, growth, and failure - A general statistical model and data analyses.
In M.S. Nikulin, N. Limnios, N. Balakrishnan, W. Kahle and
C. Huber-Carol (Eds), Advances in degradation modeling. Applications to reliability, survival analysis, and finance, Birkhäuser-Basel, 2010.

囯 A. Rényi.
On the central limit theorem for the sum of a random number of independent random variables.
Acta Mathematica Academiae Scientiarum Hungarica, 11 (1-2): 97-102, 1960.
W. Schwarz.

The ex-Wald distribution as a descriptive model of response time.
Behavior Research Methods, Instruments and Computers, 33(4): 457-469, 2001.W. Schwarz.

On the convolution of inverse Gaussian and exponential random variables.
Communications in Statistics - Theory and Methods, 31(12): 2113-2121, 2002.

